Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids
نویسندگان
چکیده
Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM) to iteratively estimate amplitudeand frequency-modulated (AM–FM) sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER) as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.
منابع مشابه
Synthesis of Acoustic Timbres using Principal Component Analysis
We have developed an alternate method of representing harmonic amplitude envelopes of musical instrument sounds using principal component analysis. Statistical analysis reveals considerable correlation between the harmonic amplitude values at different time positions in the envelopes. This correlation is exploited in order to reduce the dimensionality of envelope specification. It was found tha...
متن کاملDiscrimination of musical instrument sounds resynthesized with simplified spectrotemporal parameters.
The perceptual salience of several outstanding features of quasiharmonic, time-variant spectra was investigated in musical instrument sounds. Spectral analyses of sounds from seven musical instruments (clarinet, flute, oboe, trumpet, violin, harpsichord, and marimba) produced time-varying harmonic amplitude and frequency data. Six basic data simplifications and five combinations of them were ap...
متن کاملAn Iterative Filterbank Approach for Extracting Sinusoidal Parameters from Quasi-harmonic Sounds
We propose an iterative filterbank method for tracking the parameters of exponentially damped sinusoidal components of quasiharmonic sounds. The quasi-harmonic criteria specialize our analysis to a wide variety of acoustic instrument recordings while allowing for inharmonicity. The filterbank splits the recorded signal into subbands, one per harmonic, in which time-varying parameters of multipl...
متن کاملAutomatic Calibration of Modified FM Synthesis to Harmonic Sounds using Genetic Algorithms
Many audio synthesis techniques have been successful in reproducing the sounds of musical instruments. Several of these techniques require parameters calibration. However, this task can be difficult and time-consuming especially when there is not intuitive correspondence between a parameter value and the change in the produced sound. Searching the parameter space for a given synthesis technique...
متن کاملAdaptive Modeling of Synthetic Nonstationary Sinusoids
Nonstationary oscillations are ubiquitous in music and speech, ranging from the fast transients in the attack of musical instruments and consonants to amplitude and frequency modulations in expressive variations present in vibrato and prosodic contours. Modeling nonstationary oscillations with sinusoids remains one of the most challenging problems in signal processing because the fit also depen...
متن کامل